

Dr.S.R.Ranganathan Library & Resource Centre Govt Polytechnic College ,Perumbayoor

TED (15) - 4133

(REVISION — 2015)

Reg. No....

Signature

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/MANAGEMENT/COMMERCIAL PRACTICE — OCTOBER, 2017

DATA STRUCTURES

[Time: 3 hours

(Maximum marks: 100)

PART — A

(Maximum marks: 10)

Marks

- I Answer all questions in one or two sentences. Each question carries 2 marks.
 - 1. List the names of the two types of complexities by which the performance of an algorithm is measured.
 - 2. Define a linked list.
 - 3. What is a circular linked list?
 - 4. Draw an example of a full binary tree.
 - 5. What is a weighted graph?

 $(5 \times 2 = 10)$

PART — B

(Maximum marks: 30)

- II Answer any five of the following questions. Each question carries 6 marks.
 - 1. Write the postfix equivalent of the following infix expressions:

(a)
$$A - B/C + (D-E)$$

(b)
$$(A + B) - C/D/E$$

- 2. Compare linear and non-linear data structures.
- 3. What is a List ADT? Describe any two methods of a List ADT.
- 4. Construct a BST by inserting the values 13, 3, 4, 12, 14, 10 and 18 in that order starting with the value 13 at the root of the BST.
- 5. Write a note on adjacency matrix representation of a graph. Write the adjacency matrix of the graph shown in Figure 1

Figure -1

[P.T.O.

Dr.S.R.Ranganathan Library & Resource Centre Govt Polytechnic College ,Perumbavoor

2

				Marks
	6	. Explain the linked representation	of a binary tree.	Marks
	7	the state on .	abble sort	(5×6 = 30)
		PA	RT — C	
		(Maxim	um marks : 60)	
	(/	Answer one full question from each	unit. Each full question carries 15 mar	ks.)
		U	NIT I	
III	I (a) Explain the evaluation of a postfi	x expression using stack.	7
	(b) Write the algorithms for insertion	and deletion of an element of a circular	queue. 8
			Or	
IV	(a)	Write a note on:		
		(i) Big O notation(iii) Prefix expression	(ii) Dequeue (iv) ADT	12
	(b)	What is meant by traversal of a	data structure ?	3
		U	NIT — II	
V	(a)	Explain the implementation of sta	ck using Linked List.	9
	(b)	Write the algorithm for 'printList	()' operation of List ADT using array.	6
			OR	
VI	(a)	Write the algorithms for removin	g the head node and tail node of a linke	ed list. 8
	(b)	Write the algorithm for the 'Inser	t' operation of a linked list.	7
		Uı	NIT — III	
VII	(a)	Write algorithm for preorder and	postorder traversal of a BST.	8
		Describe threaded binary tree sho		7
	()	•	Or	
VIII	(a)	Describe the 'find' operation of a	a BST.	7
* 111		Describe the 'insertion' operation		8
	(0)		at IV	
				e order
ΙX	(a)	Write the algorithm for breadth-first-search (BFS) of a graph. Write the order in which nodes are visited by applying DFS on the graph shown in Figure -1		
		starting with node 0.		9
		Write a note on Linear search.		6
	(-)		OR	
X	(a)	Write a note on Warshall's algori	hm.	6
(b) Write the algorithm for depth-first-search (DFS) of a graph. Write the order in which nodes are visited by applying DFS on the graph shown in Figure -1 starting with node 0.				order in igure -1 9