

Dr.S.R.Ranganathan Library & Resource Centre Govt Polytechnic College ,Perumbavoor

TED (15) – 4133	Reg. No
(REVISION — 2015)	Signature

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE — APRIL, 2018

DATA STRUCTURES

[Time: 3 hours

(Maximum marks: 100)

PART — A

(Maximum marks: 10)

Marks

- I Answer all questions in one or two sentences. Each question carries 2 marks.
 - 1. Compare linear and non-linear data structures.
 - 2. Convert A/B-C+D*E to postfix form.
 - 3. List two fields or parts of a node of linked lists.
 - 4. Define degree of a tree.
 - 5. Define path and length of path of graph.

 $(5 \times 2 = 10)$

PART — B

(Maximum marks: 30)

- II Answer any five of the following questions. Each question carries 6 marks.
 - 1. Write short notes on time complexity and space complexity.
 - 2. Explain about linked list. Write logic to insert an element at kth position.
 - Write short notes on doubly and circular linked lists.
 - 4. Describe about expression trees and threaded binary trees with simple example figures.
 - Write three cases to delete a node of BST.
 - Explain quick sort algorithm.
 - 7. Explain adjacency matrix and adjacency list representations of graph with an example. $(5 \times 6 = 30)$

[P.T.O.

[22]

Dr.S.R.Ranganathan Library & Resource Centre Govt Polytechnic College ,Perumbavoor

2

	arks
PART — C	
(Maximum marks : 60)	
(Answer one full question from each unit. Each question carries 15 marks.)	
Unit — I	
III (a) Explain the algorithm of infix to postfix conversion using stack ADT.	9
(b) Explain about any three data structure operations.	6
Or	
IV (a) Describe stack ADT algorithm with push() and pop() operations.	9
(b) Explain about priority queue and dequeue.	6
Unit — II	
V (a) Describe the algorithm to implement queue using LinkedList ADT.	9
(b) Explain about List ADT operations - find() and PrintList() using array.	6
OR	
VI (a) Explain the algorithm to implement stack using LinkedList ADT.	9
(b) Explain algorithms for LinkedList ADT - insert last node and delete last node.	6
Unit — III	
VII (a) Write algorithm to implement three tree traversals using BST ADT.	9
(b) Describe binary tree. Explain about linked representation of binary tree with example.	6
OR	
VIII (a) Explain about BST. Write algorithm for insertion and find operations.	9
(b) Describe the terms related to tree - degree of a node, degree of a tree, siblings.	6
Unit — IV	
IX (a) Describe DFS and BFS graph traversals algorithms.	9
(b) Explain binary search algorithm.	6
OR.	
X (a) Explain about warshall's all-pair shortest path algorithm.	9
(b) Describe the terms related to graph - multi graph, sub graph, directed graph.	6